Scrappy, Not Crappy 604's Unique Approaches to Solving Common Resource Constraints

James Best and Eugene Fang - FIRST Mentor Conference 8/25/2024

About Us

2000-2006: FLL students (same team)

2007-2010: Students on 604

2011-2020: Remote advisors for 604

2021-present: Mentors on 604

Preface

- We are sharing how we work around our specific team constraints
- Design your processes around your team's constraints
- How can you give your students the best experience within you resources?
- Don't copy what we do 1:1; use this as inspiration for your own team

Topics

• Manufacturing

Manufacturing with jigs and 3D printing to mitigate limited machine tool access

• Modeling

Model-based design to be efficient with time and money

• Portability

Designing for portability to work around facility limitations

Simulation

Using simulation to make up for limited time with the robot

Manufacturing

Manufacturing 604's Manufacturing Constraints

Team Tools

- Common hand tools
 - Hand drill, jigsaw, etc...
- Drill press
- Miter Saw

Student Tools

• Prusa 3D printers (~10 across the team)

Mentor Tools

- Combo mill/lathe (awful)
- Mini CNC mill (small, old, and VERY slow)
- Networking (ask other teams for a favor)

Manufacturing **Robot Construction**

How we build a robot

- Tubing
- Thin plate gusset
- COTS Parts / Hardware
- \star 3D print anything else \star

Requirements

- Manufacture with accessible tools
 - Minimal / no "machined parts"
 - 2022 Total: 2 (chain tensioner)
 - 2023 Total: 4 (tube plugs) *foreshadowing*
 - 2024 Total: 6 (chain mount + 4 tubes)
- \star Interchangeable parts (no match drilling) \star

Manufacturing **Tubing Drill Jigs**

Process

- Pins engage in punched / pre-drilled tubing
- Clamp jig to tubing
- Hand drill or drill press (preferred) desired holes

Results

- Hole position better than +/- 0.01"
 - Gussets always align
- Any student capable of making good tubing with minimal training

Why use a drill jig now that fully punched tubing is available?

- Stronger (no extra holes)
- Enables non-standard hole patterns
- Smooth surface may be needed for some mechanisms
- Aesthetics

Manufacturing Tubing Cut Jigs

Process

- Pins engage in punched / pre-drilled tubing
- Hold in place while aligning to chop saw
- Clamp tubing to saw
- Remove jig
- Cut with miter saw

- Cut accuracy is limited by rigidity of saw
 - Better with high tooth count blades
 - Edge within 0.01"-0.02" of desired

Manufacturing Gussets

Buy (Fabworks) vs Make (Router)?

- **Quality**: ~ Both
 - Better edge surface finish Router
 - Good accuracy Both
- Lead Time: +1 Router
 - Router can have parts in a few hours
 - Buy: Order Monday night, arrives by Saturday
- **Cost**: ~ Both (+1000000x Buy if including mentor labor)
 - Stock plates for OMIO \approx buying the parts
 - Depends on where you buy material
- Labor Time: +1000000x Buy
 - Buy: no CAM, no acquiring material, no tool setup, no running router, no cleanup

Key Takeaway:

Order your plates/Gussets (use FRC604 for a discount from Fabworks)

- Structure your build season to work around lead times
- Router only for unavoidable turnaround times

Manufacturing **Gusset Design**

Skeletonizing (commonly called pocketing)

- Not the same as pocketing (leaving thin material)
 - Skeletonizing fully cut through
- In the second second
 - How do you save weight?
 - Use thinner material
 - Change your geometry

FEA (Finite Element Analysis)

- In the second second
 - How do you predict if part is strong enough?
 - Napkin math is adequately accurate
 - Load conditions are harder to estimate
- Good of for teaching students
 - Visualize stress in material
 - Builds intuition
 - Helps teach napkin math

- 1/4" skeletonized plate
- 0.5 lbs
- + 45 minutes of CAD time (not including refinement)

- 1/8" plate w/ motor doubler plate
- 0.49 lbs
- Ready to manufacture
- <0.5x price / part

Manufacturing **Router Jigs**

Process

- Use router template to mark the cut line
- Jigsaw within 1/4" of the cut line
- Clamp / adhere router template to part
- Hand router with template follower bit
 - Mentor should probably do this

Results

- Copies the template into the part
- Accuracy is limited by the template

Making Templates

- 3D print
- Order an aluminum copy of the part from Fabworks
 - Can use extra aluminum copies as temporary parts for the robot

Limitations

- Only tested with wood and polycarbonate
- Don't recommend aluminum (sketchy)

Manufacturing **3D Printing - If It's Yellow, It's 3D Printed**

2023

²⁰²²

Manufacturing **3D Printing**

Manufacturing **Should this be 3D Printed?**

Electronics Mounts?

Pulleys?

🗹 Good Idea 👍

Gear Boxes? 🗹 Fine

Gears? ▲ OK with care

Sprockets? ▲ OK with care

Tube Plugs? X Use Metal

Manufacturing **3D Printing Structural Components**

Why print parts that can be made from plate?

- No labor (5min), cheap, lead-time (overnight)
 - Kids print parts at home (no mentor support)
 - <u>Same printer (Prusa) + print settings</u>
 - Divide parts over printers to finish ASAP
 - Full mechanism ready by morning
- Parts can be upgraded during comp (print in pit)

Materials and Settings

- PETG
 - Excellent layer adhesion
 - Print orientation doesn't really matter for strength
- 100% Infill only treat the part like it's billet
 - Tap holes, lighten with pockets, etc...

Limitations

Brittle - Impacts tend to crack parts / sudden failure

Manufacturing 3D Printing Motion Components

Only print with 100% infill

- Torque does not transmit through infill
- Design as if you were making from billet

Don't directly copy metal parts

- Do some napkin math!
 - Can the spline teeth take motor torque?
 - Will the sprocket teeth fail?
 - Will the gear teeth fail?
- Do a bench test!
 - Measure strip out torque of bore
 - Use a torque wrench with shaft

Pitfalls

- Watch out for wear
- Use <u>stator</u> current limits

Modeling

Modeling **604's Meeting Constraints**

Technical Mentors

- Availability: Weekdays After 8pm + Weekends
- Limitations: Technical Mentors are not teachers
 - Can't open school room

Build Season Schedule

- Weekends in-person
 - Build & test prototypes / robot
- Weekday evenings online (~3 days a week)
 - Research (ChiefDelphi, Open Alliance)
 - Design, model, iterate
 - Option: In-person at student / mentor house
 - 2 3 weeks before first competition

Limitations

- Everything we build must work the first time
 - Even prototypes must have a good chance of working or at least providing very valuable data

	Sun 25	Mon 28	Tue 27	Wed 28	Thu 29	Fri 30	Sat 31
all-day							
				9 AM			
							9:30 AM POROTICE
10 AM		10 AM	10 AM				R050116-8
	10=30 AM						
11.004	ROBOTICS				11.624	1	
Noan							
11-14							
1:31 PM-		i					
2PM				2РМ		2 PM	
SPM		1					
		3PM					
4.PM							
		4 PM	4PM		4 PM		
5PM		SPM					
6PM							
7PM							
01114		8PM		8 PM		8PM RODOTION	
		ROBOTICS		ROBOTICS		RUBUTICS	
9 PM							

Modeling Why We Model

What is modeling?

- Any amount of math to predict an end result
 - Basic motor gearing math and CG calculations count as ulletmodeling!
 - Most of the stuff we do uses high-school-level math

Why Model?

- Doing some math now saves time and money later
- De-risk and solve problems as early as possible
 - Prior experience / modeling: \$
 - Prototyping: \$\$\$
 - Integration & testing: \$\$\$\$\$\$\$\$
- In-person meeting time is precious
 - More efficient use of time & resources vs. physical iteration
 - More parallelization with limited mentor time and oversight
- Closer to real-world engineering practices

Modeling Example: CG Estimation "Tippy G"

Why Model?

- Quickly rule out robot architectures for being too tippy
- Quickly determine weight budgets per mechanism

Model

- Spreadsheet with weighted sums to estimate CG
- Includes wheelbase to estimate ease of tipping
 - Linear acceleration "Tippy G": >1.2 when driving
 - Turning in place: >360 deg/sec
- Calculated for every major robot configuration

- Ruled out > 4 different concepts in 2023
 - Robot never tipped even when driving fully extended
- Highlighted weight budget issues early
 - Identified mechanisms for weight reduction before building

Base Components						Close Speaker Arm (60deg)				
Part	Mass	L	Н	WL	WH	Part	Mass	L	Н	WL
Frame	10	0	3	0	30	Arm	20	3	16	60
Swerve	26	0	3.5	0	91	Arm Ele	15	5	13	75
Battery	15	10	4	150	60	Arm Su	10	5	13	50
Bumper	10	0	4	0	40					C
E Board	15	0	3	0	45					C
				0	0					C
Climber	0	0	6	0	0					C
Intake	20	-9	12	-180	240					
				0	0					C
				0	0					(
Total	96	-0.313	5.271	-30	506	Total	45	4.111	14.33	185
Base L	25									
				_		Total	141	1.099	8.163	155
Tippy G	2.312		deg/sec	#NUM!						
						Tippy G	1.397		deg/sec	1269
	Include	e Bumpe	ers and B	attery?						
		TP	RUE							
			1		1					

Modeling Example: 2024 Gear Ratio Optimization

Why Model?

- Robot design required custom gearboxes
 - Not easily swappable gear ratio
- Maximize speed of all mechanisms
 - 2024 first year 604 optimized for speed
- Tools like ReCalc are great

Model

- Trapezoidal motion profile
- Stator current limits torque
- Supply voltage limits speed
- Gravity offset

- Motion profile limits were copied from model
 - No guess and check for tuning
- Fastest mechanisms in team's history

Modeling **Example: 2019 HAB Climb**

Why Model?

- 604 had a "unique" climb in 2019
- Concept was questionable and required the robot to be built around it
 - Needed 100% confidence it would work before committing to the concept

Model

- Basic geometry / trig to estimate torques
- Static analysis (easy vs dynamic)
- Included variation in manufacturing
 - Ensure CG wouldn't become an issue

- Didn't believe it would work despite model
 - Small prototype to prove model
- Robot worked first try + every future attempt

Modeling When to Prototype

Prototype what you can't model

- Don't skip a design because it can't be easily modeled
 - 604 2022 non-dynamic climb
- Wasted tons of time in 2024 avoiding swinging the chain • Avoid getting stuck modeling when it's faster to "just build it"
- Game piece interactions, especially if deformable
- **Hot take** : Prototyping arms/elevators is a waste of time
 - Vertice Learning to build an elevator != Can elevator elevate

In-Person Meetings

- In-Person time is valuable use it for what you need
 - CAD / Modeling can be done online
- Intersection of the second section of the second section of the second section of the second section of the second seco Be selective with prototypes – learn from Open Alliance
 - teams
 - If the design isn't done (prototype or robot), there's little value in meeting in-person

Portability

Portability 604's Practice Spaces

School "Library"

- Availability: Weekends (Saturday school takes priority)
- **Space:** Enough room for full FRC field
- Limitations: Must be returned to normal during school week, can't destroy carpet

Friends

- Availability: When our schedules align
- **Space:** Proper practice field w/elements
- Limitations: Need to transport stuff to and from location

Townhouse Parking Lot

- Availability: Until we get kicked out
- Space: Enough room for full FRC field
- Limitations: cars, neighbors, no carpet

Portability **Playing Field Elements**

School "Library" Limitations

- Must convert back to normal during week
- Field elements must go back to Robotics room
 - Kids need to lift them...

FIRST Field Element Designs

- Intended to hold up to competition
 - large and heavy (hard to move)
 - expensive
 - time consuming to make

Design Your Own Field Elements

- Practice Requirements != Competition Requirements
 - What are we trying to practice with the robot?
 - What features do we need for practice?
- De-feature / simplify the field elements

Portability **Playing Field Elements**

Official Wood Hub <u>604's Hub</u> Full Upper Goal Upper Goal Rim Vision Targets Ball Return Lightweight, easy to disassemble Fender structure

Portability **Playing Field Elements**

Example 2024 Speaker

- What features does the speaker have?
- What do we need to practice?
 - Does vision work?
 - Does note go into goal?
- Limitations
 - Missing bounce out
 - Missing alignment to subwoofer
 - Floppy April Tags (could be seen as a benefit)

Official Wood Speaker 604's Speaker Top/Bottom Tarp Full Goal + rigid (catch notes) Goal Edges backing April Tags April Tags Minimal Supporting Subwoofer Structure

Portability 604's Build Spaces

School Robotics Room

- Availability: Weekends (year round storage)
- **Space:** Large room with workbenches, basic tools, materials
- Limitations: No machine tools, availability

Mentor or Student House

- Availability: Whenever someone volunteers
- **Space:** Whatever space is available (garage, maybe living room)
- Bonus: might have machine tools
- Limitations: Need to provide tools / parts / materials, junk, power failures???

Requirement

 Move workspace between school and houses on a weekly basis

Garage

Portability **Portable Workspace**

Requirements

- Tools (Hand Drill, Drill Bits, Clamps, Files, etc...)
- Parts (Hardware, COTS Parts, Material, etc...)
- Workbench
- Fast / Easy Setup
- Easy to Transport
- Affordable

Super Pits / Road Cases

- **V** Tool Storage
- **V** Parts Storage
- Workbench
- 🔽 Easy Setup
- X Need truck/trailer to transport
- **X** Expensive to make

Photos pulled from CD thread: <u>https://www.chiefdelphi.com/t/team-4414-hightide-pit-writeup/411862</u>

Portability **Pit Crates**

Concept

• Split road cases into 18" x 18" x 48" stacking crates

604 Pit Crates

- **V** Tool Storage
- **V** Parts Storage
- Workbench
- **V** Fast Setup
- **Fits in SUV**
- + Palletizes for shipping
- Cheap to make (~1k)

Parts Bins + Battery Crates 🖳

Palletizing

Unloading + Packing for Champs

Portability **Pit Crates**

Key Takeaway: **Work out of Pit Crates Year Round**

- Everyone knows where things are
- Easy to move between school and garages

Simulation

Simulation 604's Constraints & Needs

Constraints

- Limited number of physical robots
 - One robot per season
 - No multiple new off-season robots
 - Can't break our robots
- Limited time with robot
 - Robot gets mechanically finished late
 - Practice space access only on weekends

Needs

- Teach students robot software & controls
- Enable more students to contribute to robot software
- Time efficiency when we have time with the robot
- Driver tryouts / practice

****+

JL

Simulation What we gain

Accessible learning of robot code and control theory

- Visual & hands-on
- Many students in parallel
- Can tinker with a full robot at home without bringing home any hardware

Increase involvement

- No need to take turns with a physical robot to test code
- Lower risk of breaking the robot due to bad code

Minimize robot bring-up time

robot and a moving/scoring robot should take hours, not days

Maximize tuning and practice

• In take : No code for new functionality should be written during in-person meetings

Robot Code Simulation Tools Used

Nothing custom, a lot of resources already exist for setting these up

- WPILib physics sim
- CTRE high-fidelity motor sim
- PhotonVision camera sim
- AdvantageScope for visualization
- AdvantageKit for log resim (2024 offseason)

On 604, our entire software stack is simulated

- Camera-based latency-compensated distributed field-relative localization
- Mechanisms (Swerve, Intake, Launcher, etc.)
- Sensors (e.g. IMU, beam break, encoders)
- (Dynamic*) autos
- Game piece detection*

* Simulated and tested, but never used in competition

PhotonVision camera sim

WPILib sim

AdvantageScope

Robot Code Simulation Workshop Examples

Single-jointed-arm simulation

- Feedback control (bang-bang, PID)
- Feedforward control / motion profiling
- Build intuition for tuning / let students try crazy things without breaking hardware

Previous year's robot code with everything except for simulation logic deleted

- Brainstorm commands, subsystem interfaces, etc.
- Implement basic robot functionality
- Test in simulation
- Run on real robot at the end

Mechanism2D viz + plotting within WPILib simulator

Robot Code Simulation Build Season Process

Weekdays

- Develop features in simulation
- GitHub Pull Requests (PRs) for code review and feedback

* Driver and software team continuously communicate expectations for how features are supposed to work; even if a feature is not yet implemented or not yet perfect, the driver practices assuming the feature works as intended in order to build the correct muscle memory

By Friday Night

- Demonstrate new feature functionality in sim
- Code quality for each PR is in a "ready to merge" state, minus tuning parameters
- Only code that meets the above criteria will be tested over the weekend

Weekend in-person meetings

- Test and tune each new feature, merge new features that work into the main software branch
- After new features are merged, the rest of the time is dedicated to drive practice*
- Some time allotted to attempt to fix minor bugs
- Major bugs & missing features are addressed Saturday night, or during the next week

Driving Simulator Goals

For driver practice

- Enable building of muscle memory without access to the robot
- Develop coordination between driver & operator
- Provide a way to warm up at competitions

For offseason driver tryouts

• Provide more equitable opportunity to learn the controls (robot access, runtime, battery limitations)

Driving Simulator Why not use existing tools?

Existing simulators

- xRC
- MoSimulator
- etc.

Unrealistic physics develops bad habits

• e.g. "bang-bang" control when driving instead of smooth stick motions

Controls don't match our real robot

- Joystick deadbands & scaling
- Automated features (e.g. auto aim)
- Some controls can be customized, but some are still limited (e.g. toggle vs. hold behavior)

Driving Simulator Robot Code vs. Unity Sim

- Robot Code Sim
 - **V** Already available
 - **V** Exactly matches real robot logic
 - X Tedious set up for each student (need to download many dependencies)
 - X Laggy on some computers
 - X Requires additional collision checking logic
- Unity Sim (WebGL)
 - X Needs to be made separately
 - X Must re-create real robot logic
 - Visit web page, plug in controller, and start driving
 - **V** Runs smoothly on most computers
 - Collision checking is built into the game engine

Driving Simulator 2023 2D Robot Code Sim

- Control scheme: operator selects next scoring position, driver triggers scoring action
- Zero real-robot scoring practice until practice day at our first regional
- Driver & operator used 2D robot code sim to practice coordination

Driving Simulator 2024 3D Robot Code Sim

- Not much extra work on top of existing robot code sim
- Added collision checking with stage & field perimeter
- Didn't get to implement visual feedback for shooting Notes •
- Used in the offseason as part of tryouts and practice

Driving Simulator Unity Sim

- Web-based plug in controller and start driving
- 2D top-down view
- Primarily used to build muscle memory for coordinating button presses
- Plans to make 3D in the future

Simulation Limitations

More exciting for students to see code running on a real robot vs. in sim

Missed learning opportunities from experiencing bad code breaking the robot

- Build season is not the time for catastrophic failures
- Provide students more opportunities to fail during the off season

code breaking the robot s he off season

